有關大規模硅基集成高維光量子芯片的工作
利用大規模集成硅基納米光量子芯片技術,實現對高維度光量子糾纏體系的高精度和普適化量子調控和量子測量。 (圖一)基于硅納米光波導的大規模集成光量子芯片(可實現對高維量子糾纏體系的高精度、可編程、且任意通用量子操控和量子測量) 集成光學量子芯片技術,基于量子力學基本物理原理,使用半導體微納加工工藝實現單片集成光波導量子器件(包括單光子源、量子操控和測量光路,以及單光子探測器等),可以實現對量子信息的載體單光子進行處理、計算、傳輸和存儲等。集成光學量子芯片具有集成度高、穩定性高、性能好、體積小、制造成本低等諸多優點。因此,該技術被普遍認為是一種實現光量子信息應用的有效技術手段。 利用硅基納米光波導技術實現的光量子芯片具有諸多獨特優點,例如與傳統微電子加工工藝兼容、可集成度高、非線性效用強、以及工作波長與光纖量子通信兼容等。然而,迄今為止光量子芯片的復雜度僅限于小規模的演示,如集成少數馬赫-曾德干涉儀對光子態進行簡單操控。因此,我們迫切需要擴大集成量子光路的復雜性和功能性,增強其量子信息處理技術的能力,從而推進量子信息技術的應用。 相干且精確地控制復雜量子器件和多維糾纏系統是量子信息科學和技術領域的一項難點。相對于目前普遍采用的二維體系量子技術,高維體系量子技術具有信息容量大、計算效率高、以及抗噪聲性強等諸多優點。最近,多維度量子糾纏系統已分別在光子、超導、離子和量子點等物理體系中實現。利用光子的不同自由度,如軌道角動量模式、時域和頻域模式等,可以有效編碼和處理多維光量子態。然而,實現高保真度、可編程、及任意通用的高維度量子態操控和量子測量,依然面臨很多困難和挑戰。 針對上述問題,英國布里斯托爾大學、北京大學、丹麥技術大學、德國馬普研究所、西班牙光學研究所和波蘭科學院的科研人員密切合作,并取得了突破性進展。研究團隊提出并實現了一種新型的多路徑加載高維量子態方式,即每個光子以量子疊加態的形式同時存在于多條光波導路徑,從而實現了一個高達15×15的高維量子糾纏系統。通過可控地激發16個參量四波混頻單光子源陣列,可以制備具有任意復系數的高維度量子糾纏態。通過單片集成通用型線性光路,可對高維量子糾纏態進行任意操控和任意測量。因此,該多路徑高維量子方案具有任意通用性。與此同時,團隊充分利用集成光路的高穩定性和高可控性,實現了高保真度的高維量子糾纏態,如4、8和12維度糾纏態的量子態層析結果分別為96、87% 和 81%保真度,遠超其他方式制備的高維量子糾纏態性能。 更重要的是,團隊通過硅基納米光子集成技術,實現了目前集成度最復雜的光量子芯片(圖一所示),單片集成550多個光量子元器件,包括16個全同的參量四波混頻單光子源陣列、93個光學移相器、122個光束分束器、256個波導交叉結構以及64個光柵耦合器,從而達到對高維量子糾纏體系的高精度、可編程、且任意通用量子操控和量子測量。 研究進一步利用該高維光量子芯片技術,驗證高維度量子糾纏系統的強量子糾纏關聯特性,包括普適化貝爾不等式和EPR導引不等式等,證明量子物理和經典物理定律的重要區別。例如,對4維度量子糾纏態,實驗觀察得到了2.867±0.014的貝爾參數,不僅成功違背經典物理定律61.9個標準差,而且超過普通二維糾纏體系的最大可到達值的2.8個標準差。研究還首次實現高維量子系統的貝爾自檢測和量子隨機放大等新功能,例如,對3維度最大糾纏態和部分糾纏態的自檢測保真度約為76%,對14維以下糾纏態均實現了量子隨機放大功能。
北京大學
2021-04-11