网上赌场真人发牌-澳门网上赌场空城
高等教育領域數字化綜合服務平臺
云上高博會服務平臺
高校科技成果轉化對接服務平臺
大學生創新創業服務平臺
登錄
|
注冊
|
搜索
搜 索
綜合
項目
產品
日期篩選:
一周內
一月內
一年內
不限
雙
催化
活性的鋰空氣電池
催化
劑
包括:簡單背景、關鍵技術名稱概念解釋、技術原理簡介、關鍵技術路線、技術先進性、技術特點或創新點、技術或產品應用領域等。傳統能源,尤其是化石燃的消耗過程中排放的二氧化碳及其他有毒氣體對全球環境的變化具有直接的影響。據預測截止 2050 年能源需求量會是現在的兩倍,而到本世紀末會增至三倍。電動交通工具和大規模的再生能源(如風能和太陽能等)的開發利用將成為應對全球環境變化、能源安全和可持續性的重要策略。高能量密度、簡便、可靠的電化學能量存儲技術是傳統能源系統向清潔能源系統、內燃機動力系統向電
南京工業大學
2021-04-14
一種
催化
轉化
催化
劑的再生方法
本發明公開了一種催化轉化催化劑的再生方法。從反應器中移出的催化劑首先進入第一再生器中通過第一再生氣進行吹掃再生。第一再生器出口的一級再生劑輸送至催化劑流量分配器后分為兩股物流分別進入第二再生器和反應器,進入反應器的一級再生劑流股的流量占流股中一級再生劑總流量的1-100%,部分一級再生劑進入第二再生器中通過第二再生氣進行二次再生后得到的二級再生劑與一級再生劑流股合并后一同進入反應器。本發明可以有效提高現有反應器產能,避免催化劑的頻繁燒炭再生并降低再生溫度與溫升,有利于延長催化劑總壽命,并且能夠實現不同移動床反應器中催化劑流速的單獨調控,可用于甲醇制丙烯的工業生產中。
浙江大學
2021-04-13
基于人工智能的新型疫苗及治療性大
分子
開發
1. 痛點問題 本項成果涉及新型疫苗的設計與應用,具體涉及生物大分子藥物及疫苗的研發過程中的抗原精準設計。 2. 解決方案 基于AI的大分子藥物及疫苗抗原設計。
清華大學
2024-09-24
海洋高
分子
微球的微流控制備方法及其應用
中國發明專利ZL202210046308.4:采用無乳化劑、無有機交聯劑的微流控法制備規整球形的海洋高分子微球,微球實心或空心、粒徑(200納米-50微米)、微觀結構可控可調,可作為吸附材料、藥物香精等載體材料的應用。
廈門大學
2025-02-07
固氮
催化
劑
元素是構成生物的最主要元素之一。盡管大氣中氮氣的含量高達78[%],但是氮氣的活化十分困難。目前工業上廣泛采用Haber?Bosch法將氮氣還原成氨氣,然而這一過程需要在高溫高壓下進行,因此能耗高。據統計,每年用于合成氨的能耗超過全球年能耗的1[%]。光/電催化固氮是合成氨的一種新途徑,能夠在常溫常壓下實現氮氣的還原,因此引起了廣泛關注。核心問題就是尋找和設計高效、穩定、低廉的催化劑。目前,高效的固氮催化劑主要是基于過渡金屬(TM)化合物,而關于非金屬催化劑的報道很少。這是由于過渡金屬中空的d軌道和占據d電子的共存,既能夠容納氮氣分子中N原子的孤電子對,又能夠提供電子到氮氣分子的反鍵軌道,從而活化N≡N三鍵、增強N?TM鍵。通過分析硼原子的核外電子結構,王金蘭教授團隊發現sp3雜化的硼原子與過渡金屬類似,也同時具有空軌道和占據軌道,因此有望用于氮氣的活化與還原。通過結構、性能等多方面的分析,他們最終選擇g-C3N4作為襯底來負載sp3-雜化的硼原子,設計了首個不含金屬的單原子催化劑,B/g-C3N4。理論計算表明,B/g-C3N4可以在極低的起始電位(0.20 V)下,通過酶促機理有效地將氮氣還原為氨氣。此外,硼的修飾可以顯著增強g-C3N4的可見光吸收,因此有望實現太陽能驅動的固氮反應。此外,該催化劑也具有很大的合成前景以及極高的穩定性。
東南大學
2021-04-11
仿生
催化
氧化技術
以酶類結構的金屬卟啉為催化劑,模仿生物氧化歷程,突破溫和條件下高效、專一活化氧氣的技術難 題,實現高附加值含氧有機化物的合成,并致力于實現該技術的工業應用,填補國內外技術空白,從本質 上解決化工領域氧化過程的安全隱患。
中山大學
2021-04-10
尾氣
催化
器
山東宇洋汽車尾氣凈化裝置有限公司
2021-08-27
尾氣
催化
劑
我公司擁有3800多平方米產品技術開發中心和汽車鋁散熱器試驗中心,產品試驗中心是省內設施最完善的散熱器試驗基地, 能進行各種規格散熱器的震動、壓力脈沖、靜壓、清潔度、鹽霧、傳熱性能、冷熱循環等試驗。產品從技術設計開發、 質量保證、產品檢測方面充分滿足了國內外客戶技術要求和質量檢測要求。
山東宇洋汽車尾氣凈化裝置有限公司
2021-08-27
分子
催化
劑通過多米諾途徑實現二氧化碳至甲醇的電還原轉化
研究團隊發現,分子催化劑轉化效率低下的關鍵原因在于分子導電能力弱以及分子的聚集效應。憑借團隊內化學與材料學等多學科的交叉背景,經過數年的前期研究工作,團隊發現將酞菁鈷分子(CoPc)與碳納米管(CNT)復合能使分子在CNT壁上分散,從而克服CoPc分子聚集以及不導電的問題,大大提高CO
南方科技大學
2021-04-14
超
分子
薄膜構筑方法
首先,一種大頭基的表面活性劑(DEAB)可以與反電荷的多頭配體(TPE-BPA)得到一種納米尺寸的無規配位簇,而后金屬離子(Zn2+)的加入則可迅速使之交聯形成無定形的白色沉淀物。通過自發的結塊過程,沉淀中的分子可進一步發生重排運動,并使其由白色粉末狀的固體在短時間內轉變形成透明且可自支撐的薄膜材料。
北京大學
2021-04-11
首頁
上一頁
1
2
3
4
5
6
...
91
92
下一頁
尾頁
熱搜推薦:
1
云上高博會企業會員招募
2
63屆高博會于5月23日在長春舉辦
3
征集科技創新成果
百家乐官网常用公式
|
百家乐官网赌坊
|
狮威娱乐
|
哪个百家乐网站最大
|
百家乐官网筹码皇冠
|
德州扑克平台
|
百家乐官网太阳城怎么样
|
百家乐澳门规矩
|
太阳会百家乐官网现金网
|
太阳城王子酒店
|
赌场百家乐官网规则
|
百家乐制胜绝招
|
百家乐官网五湖四海娱乐平台
|
兄弟百家乐官网的玩法技巧和规则
|
如何玩百家乐官网赢钱技巧
|
水富县
|
澳门百家乐实战视频
|
百家乐官网赌场牌路分析
|
威尼斯人娱乐场棋牌
|
24山吉凶八卦图
|
百家乐官网游戏策略
|
蜀都棋牌下载
|
威尼斯人娱乐城简介
|
百家乐防伪筹码套装
|
百家乐官网有试玩的吗
|
威尼斯人娱乐上网导航
|
百家乐官网透视牌靴
|
镇远县
|
大发888中期
|
巴比伦百家乐的玩法技巧和规则
|
澳门百家乐牌例
|
优博百家乐娱乐城
|
做生意招财的花有哪些
|
赌王百家乐官网的玩法技巧和规则
|
百家乐翻天粤语版qvod
|
鸟巢百家乐官网的玩法技巧和规则
|
百家乐的战术
|
基础百家乐规则
|
澳门百家乐赢钱公式不倒翁
|
百家乐路单下
|
博彩网百家乐的玩法技巧和规则
|