副教授
副教授
講師
資源與環境
南京師范大學環境學院
電子郵箱:75010@njnu.edu.cn
辦公室:南京師范大學仙林校區環境學院 素質樓406室
通信地址:南京市棲霞區文苑路1號,210023
Researchgate: https://www.researchgate.net/profile/Yun_Chen57
教育背景
2011.09-2017.06 中國科學技術大學,環境工程,工學博士(碩博連讀)
2015.08-2016.12 新加坡南洋理工大學,環境工程,聯合培養博士(國家公派)
2007.09-2011.06 南京師范大學,環境工程,工學學士
工作經歷
2017.09-至今,南京師范大學,環境科學與工程,講師
1. 陳赟,混菌厭氧發酵代謝產物調控機制研究,第十一屆奧加諾(水質與水環境)獎學金,二等獎學金,2017。
2. 江蘇省雙創博士人才,2018。
3. 南京留學人員科技創新項目C類人才,2019。
1. X. Wang, Y. Zhi, Y. Chen*, N. Shen, G. Wang, Y. Yan, Realignment of phosphorus in lake sediment induced by sediment microbial fuel cells (SMFC), Chemosphere (2021) 132927.
2. Y. Cheng, X. Wang, J. Wu, Y. Chen*, N. Shen, G. Wang, X. Liu, Improvement of Methane Production and Sludge Dewaterability by FeCl3-Assisted Anaerobic Digestion of Aluminum Waste-Activated Sludge, ACS ES&T Water (2021).
3. Y. Chen, R. Ruhyadi, J. Huang, W. Yan, G. Wang, N. Shen, W. Hanggoro, Comprehensive comparison of acidic and alkaline anaerobic fermentations of waste activated sludge, Bioresour. Technol. 323 (2021) 124613.
4. Z. Liang, N. Shen, H. Huang, Y. Chen*, Evaluating decolorization capacity about alginate encapsulation system of Shewanella oneidensis MR-1 mingled with conductive materials, Environmental Technology & Innovation 21 (2021) 101344.
5. W. Yan, J. Wu, Y. Chen*, N. Shen, G. Wang, X. Liu, Short reaction times coupled with alkalization improves the release of phosphorus from Al-waste activated sludge, Bioresour. Technol. (2021) 125168.
6. Y. Chen, R. Ruhyadi, J. Huang, W. Yan, G. Wang, N. Shen, W. Hanggoro, A novel strategy for improving volatile fatty acid purity, phosphorus removal efficiency, and fermented sludge dewaterability during waste activated sludge fermentation, Waste Management 119 (2021) 195-201.
7. W. Yan, Y. Chen*, N. Shen, G. Wang, J. Wan, J. Huang, The influence of a stepwise pH increase on volatile fatty acids production and phosphorus release during Al-waste activated sludge fermentation, Bioresour. Technol. 320 (2021) 124276.
8. N. Shen, Z. Liang, Y. Chen*, H. Song, J. Wan, Enhancement of syntrophic acetate oxidation pathway via single walled carbon nanotubes addition under high acetate concentration and thermophilic condition, Bioresour. Technol. 2020; 306: 123182.
9. H. Lin, Y. Chen*, N. Shen, Y. Deng, W. Yan, R. Ruhyadi, G. Wang, Effects of individual volatile fatty acids (VFAs) on phosphorus recovery by magnesium ammonium phosphate, Environ. Pollut. 2020; 261: 114212.
10. Y. Chen, R. Ruhyadi, N. Shen, Y. Wu, W. Yan, Z. Liang, J. Huang, G. Wang, Three birds with one stone: Lower volatile fatty acids (VFAs) reduction, higher phosphorus (P) removal, and lower alkali consumption via magnesium dosing after waste activated sludge (WAS) alkaline fermentation, J. Cleaner Prod. 2020; 258: 120687.
11. Y. Chen#, H. Lin#, N. Shen, W. Yan, J. Wang, G. Wang, Phosphorus release and recovery from Fe-enhanced primary sedimentation sludge via alkaline fermentation, Bioresour. Technol. 2019; 278: 266-271.
12. Y. Chen#, H. Lin#, W. Yan, J. Huang, G. Wang, N. Shen, Alkaline fermentation promotes organics and phosphorus recovery from polyaluminum chloride-enhanced primary sedimentation sludge, Bioresour. Technol. 2019; 294: 122160.
13. R. Ruhyadi#, Y. Chen#, N. Shen, W. Yan, Z. Liang, H. Wang, G. Wang, Multiple uses of magnesium chloride during waste activated sludge alkaline fermentation, Bioresour. Technol. 2019; 290: 121792.
14. Y. Chen, K. Xiao, N. Shen, R.J. Zeng, Y. Zhou, Hydrogen production from a thermophilic alkaline waste activated sludge fermenter: Effects of solid retention time (SRT), Chemosphere. 2018; 206: 101-106.
15. Y. Chen, K. Xiao, X. Jiang, N. Shen, R.J. Zeng, and Y. Zhou, Long solid retention time (SRT) has minor role in promoting methane production in a 65°C single-stage anaerobic sludge digester, Bioresource Technology. 2018; 247: 724-729.
16. Y. Chen, X. Jiang, K. Xiao, N. Shen, R. J. Zeng, Y. Zhou, Enhanced volatile fatty acids (VFAs) production in a thermophilic fermenter with stepwise pH increase -Investigation on dissolved organic matter transformation and microbial community shift, Water Research. 2017; 112:261-8.
17. Y. Chen, K. Xiao, X. Jiang, N. Shen, R. J. Zeng, Y. Zhou, In-situ sludge pretreatment in a single-stage anaerobic digester, Bioresource Technology. 2017; 238:102-108.
18. Y. Chen, N. Shen, T. Wang, F. Zhang, R. J. Zeng, Ammonium level induces high purity propionate production in mixed culture glucose fermentation, RSC Advances. 2017; 7:518-25.
19. Y. Chen, F. Zhang, T. Wang, N. Shen, Z.-W. Yu, R.J. Zeng, Hydraulic retention time affects stable acetate production from tofu processing wastewater in extreme-thermophilic (70oC) mixed culture fermentation, Bioresource Technology. 2016; 216:722-728.
20. Y. Chen, T. Wang, N. Shen, F. Zhang, R.J. Zeng, High-purity propionate production from glycerol in mixed culture fermentation, Bioresource Technology. 2016; 219:659-667.
21. Y. Chen, Man. Chen, N. Shen, R.J. Zeng, H2 production by the thermoelectric microconverter coupled with microbial electrolysis cell, International Journal of Hydrogen Energy. 2016; 41:22760-22768.
22. Y. Chen, J. He, Y.-Q. Wang, T.A. Kotsopoulos, P. Kaparaju, R.J. Zeng, Development of an anaerobic co-metabolic model for degradation of phenol, m-cresol and easily degradable substrate, Biochemical Engineering Journal. 2016; 106:19-25.
23. Y. Chen, J. He, Y. Mu, Y.C. Huo, Z. Zhang, T.A. Kotsopoulos, R.J. Zeng, Mathematical modeling of upflow anaerobic sludge blanket (UASB) reactors: Simultaneous accounting for hydrodynamics and bio-dynamics, Chemical Engineering Science. 2015; 137:677-684.
24. N. Shen, Y. Chen, Y. Zhou, Multi-cycle operation of enhanced biological phosphorus removal (EBPR) with different carbon sources under high temperature, Water Research. 2017; 114:308-315.
25. K. Xiao, Y. Chen, X. Jiang, Y. Zhou, Evaluating filterability of different types of sludge by statistical analysis: The role of key organic compounds in extracellular polymeric substances, Chemosphere. 2017; 170:233-41.
26. K. Xiao, Y. Chen, X. Jiang, Q. Yang, W.Y. Seow, W. Zhu, and Y. Zhou, Variations in physical, chemical and biological properties in relation to sludge dewaterability under Fe (II) – Oxone conditioning, Water Research. 2017; 109:13-23.
27. K. Xiao, Y. Chen, X. Jiang, V.K. Tyagi, Y. Zhou, Characterization of key organic compounds affecting sludge dewaterability during ultrasonication and acidification treatments, Water Research. 2016; 105:470-478.
28. F. Zhang, Y. Chen, K. Dai, R.J. Zeng, The chemostat study of metabolic distribution in extreme-thermophilic (70oC) mixed culture fermentation, Applied Microbiology and Biotechnology. 2014; 98:10267-10273.
29. F. Zhang, Y. Chen, K. Dai, N. Shen, R.J. Zeng, The glucose metabolic distribution in thermophilic (55oC) mixed culture fermentation: A chemostat study, International Journal of Hydrogen Energy. 2014; 40:919-926.
30. X.-R. Pan, Y.-K. Wang, W.-W. Li, Y.-S. Wang, X. Wang, Y. Chen, Y.-K. Geng, C.-X. Li, H.-q. Yu, P.K. Lam, (2017) Selective co-production of acetate and methane from wastewater during mesophilic anaerobic fermentation under acidic pH conditions. Environmental Science: Water Research & Technology.
31. K. Xiao, W.Y. Seow, Y. Chen, D. Lu, X. Jiang, Y. Zhou, (2017) Effects of thermal-Fe (II) activated oxone treatment on sludge dewaterability. Chemical Engineering Journal.
32. W. Yan, N. Shen, Y. Xiao, Y. Chen, F. Sun, V.K. Tyagi, Y. Zhou, (2017) The role of conductive materials in the start-up period of thermophilic anaerobic system. Bioresource Technology.
33. F. Zhang, J.H. Yang, K. Dai, Y. Chen, Q.R. Li, F.M. Gao, R.J. Zeng, Characterization of microbial compositions in a thermophilic chemostat of mixed culture fermentation, Applied Microbiology and Biotechnology. 2016; 100:1511-1521.
34. F. Zhang, Y. Zhang, Y. Chen, K. Dai, M.C.M. van Loosdrecht, R.J. Zeng, Simultaneous production of acetate and methane from glycerol by selective enrichment of hydrogenotrophic methanogens in extreme-thermophilic (70oC) mixed culture fermentation, Applied Energy. 2015; 148:326-333.
35. N. Shen, X.Y. Xia, Y. Chen, H. Zheng, Y.C. Zhong, R.J. Zeng, Palladium nanoparticles produced and dispersed by Caldicellulosiruptor saccharolyticus enhance the degradation of contaminants in water, RSC Advances. 2015; 5:15559-15565.