网上赌场真人发牌-澳门网上赌场空城

|
西安電子科技大學
西安電子科技大學 教育部
  • 16 高校采購信息
  • 179 科技成果項目
  • 1 創新創業項目
  • 0 高校項目需求

基于形態稀疏協同表示的高光譜遙感圖像分類

2023-03-14 11:08:06
云上高博會 http://www.gxf2npi.xyz
點擊收藏
所屬領域:
人工智能
項目成果/簡介:

本成果屬于高光譜圖像信息處理技術,為高光譜遙感圖像分類方法。首先對高維高光譜圖像提取第一主成分特征圖,并利用結構元素對主成分特征圖進行多維的空間結構特征提取,結合提取的形態學特征與原始光譜特征,利用聯合稀疏表示算法將同一空間區域中的像元聯合進行稀疏系數矩陣的求解,最終通過最小殘差判斷準則確定像元類別。這種方法有效地并且充分的挖掘了高光譜遙感圖像中的空間信息、形態信息和光譜信息。考慮到稀疏表示方法在迭代求解稀疏向量時的耗時性與對非線性數據的不可分性,進一步提出了基于差分形態學核協同表示的高光譜遙感圖像分類算法。該成果方法通過核化的協同表示分類算法避免了優化求解的耗時性,同時克服了高維特征空間下數據的線性不可分性。算法首先通過差分形態學方法在高光譜遙感圖像的主成分分析圖上進行空間特征提取,并通過核變換方法將新特征字典投影到高維的線性核特征空間,最后利用核化協同表示算法的高效性對高光譜圖像進行分類。

主要技術指標

University of Pavia 通過 ROSIS-03 傳感器記錄,該圖像捕獲了意大利帕維亞的帕維亞大學周圍的市區。圖像尺寸為 610×340×103,空間分辨率為 1.3 m / 像素,光譜覆蓋范圍為 0.43 至 0.86μm。該圖像考慮了九個類別。其具有 42776 個標記樣本。每類取 50 個有標記樣本共 450 個樣本作為訓練樣本。

請參閱表 1,本方法提出的高光譜圖像分類方法,相比于傳統分類器 SVM,OA 提高了約 18%;相比于 JSRC,OA 提高了約 5%;同時參閱表 2,展示了本成果方法的時間運行效率與相關方法的比較。該成果無需使用 GPU 資源在保證精度的同時有效提升了分類的精度和效果。

表 1 PaviaU 數據集上對比實驗結果

表 2 不同數據集上時間運行對比實驗結果

應用范圍:

高光譜圖像中含有豐富的光譜信息和空間信息,可以實現對地物精確辨別與細節提取。由于高光譜圖像獨有的特點,高光譜遙感技術已經廣泛的應用在不同的領域。在民用領域,高光譜遙感影像已經被用于城市環境監測、地表土壤監測、地質勘探、災害評估、農業產量估計、農作物分析等方面。該成果方法較好的保證了分類精度和采用形態學特征提取方法較好的保證了分類結果的空間表現。

會員登錄可查看 合作方式、專利情況及聯系方式

掃碼關注,查看更多科技成果

取消
面对面棋牌游戏| 如何看百家乐官网的路纸| 澳门顶级赌场| 百家乐庄闲比率| 太阳城网上投注| 全讯网址| 在线百家乐官网合作| 百家乐真人游戏娱乐场| 澳门赌场着装| 免费百家乐官网缩水工具| 棋牌中心| 百家乐官网桌子租| 优博开户| 明升百家乐官网QQ群| 百家乐书| 尤溪县| 足球百家乐系统| 搓牌百家乐官网技巧| 冠通棋牌世界| 百家乐赌场方法| 玩百家乐官网输了| 456棋牌官网| 百家乐开户首选| 容城县| 最新全讯网网址| 24山向是什么| 乐百家乐官网彩现金开户| 大发888娱乐城 真钱bt| 百家乐怎么赢对子| 百家乐官网对子计算方法| 大发888下载df888| 百家乐赌博筹码大不大| 澳门百家乐官网出千吗| 现金百家乐游戏| 百家乐送现金200| 太阳百家乐官网娱乐| 百家乐官网发牌铲| tt娱乐城官方网站| 百家乐赢一注| 百家乐官网网上赌场| 百家乐官网群boaicai|