環境污染和能源短缺已成為當今世界面臨的最主要危機,人們不斷探究治理環境和開發可再生能源的新方法。于1972年,Fujishima和Honda報道采用TiO2光電極和鉑電極組成光電化學體系使水分解為氫氣和氧氣,從而開辟了半導體催化這一新的研究領域。近些年,將有機污染物降解已經成為能源環境科學領域的研究熱點。該研究對于治理水污染,保護水環境具有重要的科學意義。
主要通過化學方法可控的調控可見光催化材料納米晶體的尺寸和形貌,合成具有規則形貌和特定裸露晶面的可見光催化材料(例如納米棒、納米帶、納米片、納米八面體和納米六面體等),并在此基礎上進一步優化能級能帶結構,同時探究催化劑不同晶面上光生載流子的分離行為、氧化還原能力以及催化活性的選擇性等獨特性質,深入結合理論模擬計算,研究不同形貌的催化劑的裸露晶面上光生載流子的行為和表面/界面微觀反應機制。為了深入研究太陽能-化學能轉化過程中的關鍵科學問題,構筑一種新型的具有特定結構和功能的MnxV2O5+x(x=1、2或3)基可見光催化材料,在不添加任何貴金屬元素的情況下,Mn3V2O8修飾的V2O5/g-C3N4異質結構在可見光照射下表現出明顯的光催化活性,比V2O5/g-C3N4異質結構高出近3倍。由于V2O5和g-C3N4之間的Z-方案路徑促進了載流子的分離,因此具有優異的可見光催化活性。
掃碼關注,查看更多科技成果