网上赌场真人发牌-澳门网上赌场空城
高等教育領域數字化綜合服務平臺
云上高博會服務平臺
高校科技成果轉化對接服務平臺
大學生創新創業服務平臺
登錄
|
注冊
|
搜索
搜 索
綜合
項目
產品
日期篩選:
一周內
一月內
一年內
不限
超大功率硅
基
射頻LDMOS晶體管設計技術
本團隊利用優化的法拉第屏蔽罩結構和版圖布局技術,基于國內8英吋工藝技術平臺,研制出大功率L 和S 波段RF LDMOS 器件,能夠提供完整的RF LDMOS器件的設計與研制方案。
電子科技大學
2021-04-10
蓖麻油
基
生物航煤及核心催化反應技術
南開大學蓖麻生物航油集成技術,是在“應對氣候變化、綠色低 碳發展”的前瞻理念下,集成南開十幾年蓖麻產業鏈開發基礎及化學 化工科研優勢,自主研發,現已取得階段性成果:建立了“生物航油基礎研發基地”,突破了催化劑關鍵技術,打通了工藝流程,產品全 項達標,成本在目前所有生物質航油中最低,申請中國發明專利 7 項, 列入國家發改委《戰略新興產業重點產品目錄》、《國家重點推廣的低 碳技術項目指南》等,獲第四屆國家和天津市創新創業大賽獎項,具 有拉動千億元綠色低碳產業鏈的巨大發展潛力。 生物航空煤油(生物航煤)就是以動植物油脂或農林廢棄物等生 物質為原料生產的航空煤油,可在航空煤油中大比例的添加使用 (50%),且不需要對發動機做任何改進。2012 年開始的歐盟航空碳 稅之爭已迫使各國爭相開發生物航煤技術來實現航空業的碳減排。生 物航煤的研發契合國家十三五發展戰略規劃,對我國航空業減排、根 治霧霾、維護能源安全、以及拉動三農等都有重要作用,是國家大力 支持的綠色低碳產業創新增長點,是當前國家急需解決的重大科學難 題之一。目前,該項目的技術難題就是核心催化劑脫氧活性不佳、航 煤選擇性低、穩定性差。 南開大學李偉教授科研團隊目前已開發出具有完全自主知識產 權的蓖麻航油制備及配套催化劑關鍵技術,使原料油轉化率>99%, 蓖麻生物航油產品收率>80%;經中石化石科院按國際生物航煤最高 標準的 ASTM D7566 和國家噴氣 3 號燃料(GB 6537-2006)等指標 檢測,全項達標。相關研究內容在《Bioresource Technology》發表論 文 1 片、申報中國發明專利 7 項、國際發明專利 2 項。相關技術受到 國內外高度重視及新聞媒體關注。在第四屆中國創新創業大賽中以天 津賽區第一名成績進入全國總決賽,最終以第 6 名榮獲“全國優秀團 隊”稱號。 市場應用前景: 生物航油市場需求巨大,據國際民航組織規定,2020 年中國航空燃油的 30%(約 1200 萬噸)要打上“生物質標簽”,如果按“50%生 物質航油:50%化石航油”摻混,需要 600 萬噸“純”生物質航油, 總產值達數千億元。但 2014 年全國生物航油產量不足 100 噸,離規 模化相差甚遠。蓖麻航油具備占據 50%市場份額的可能性,按 5 年生 產蓖麻生物航油 300 萬噸計算,僅技術轉讓和催化劑銷售利潤就可達 5 億元以上。同時,使用生物航油可降低 50%以上的污染物排放,可 有效減排治霾,維護我們的環境安全。 擬開展合作方式: 現已申請中國發明專利 7 項,擬開展合作方式:建設年產萬噸級生物航油 及配套催化劑示范生產裝置,采用股權合作或實施許可的方式合作。
南開大學
2021-04-11
耐蝕鐵
基
形狀記憶合金石油天然氣管接頭
成果描述:國內油氣田站場生產管線用鋼管腐蝕都十分嚴重,干擾正常生產,每年損失為3億,耗資巨大,主要腐蝕部位為管子接頭處。本成果研究出一種鐵基形狀記憶合金新型功能材料和管接頭部件的生產工藝,為油氣田提供了一種既耐腐蝕又密封耐高壓免焊接、免補口的管道連接的新技術,包括配套的新材料、新方法和新裝備。本成果也可用于化工流程、家用純凈水管道的方便連接。市場前景分析:石油天然氣站場管線、化工廠管道連接、機械裝備壓力油管、家用飲用水管的連接。與同類成果相比的優勢分析:1、鐵基形狀記憶合金管接頭抗拉強度≥700Mpa,屈服強度≥350Mpa,延伸率>20%,回復應力>200 Mpa。 2、良好的耐腐蝕性能,能抵抗油氣開采產生的深井地下水(鹵水)的腐蝕。 3、耐壓不低于20 Mpa,可滿足石油天然氣地面管線的要求。 4、相對于目前焊縫腐蝕壽命提高2~3倍。 5、接頭化學成分穩定,輸送的飲用水可達到直接飲用的衛生標準。 國際先進。
四川大學
2021-04-11
一種玻璃纖維
基
光催化濾網的制備方法
本發明公開了一種玻璃纖維基光催化濾網的制備方法。包括以下步驟:1)對玻璃纖維束施加外力,加工成玻璃纖維網,在玻璃纖維網表面涂覆膠黏劑,膠黏劑與玻璃纖維網的重量比為1∶2~50;2)將重量比為1∶10~40的光催化劑與有機溶劑混合,超聲分散10~45min;3)將步驟2)的混合液以噴濺的方式負載到步驟1)的涂覆有膠黏劑的玻璃纖維網表面,光催化劑與玻璃纖維網的重量比為0.01~1.5∶1,干燥,得到玻璃纖維基光催化濾網。本發明具有方法簡便、無需煅燒,風阻小、透光性好,負載的催化劑不易脫落、光催化活性高等優點。所得組件適用于空氣凈化器等,可用于光催化凈化室內氣態有機污染物。
浙江大學
2021-04-11
2-亞烴
基
環丁酮的一種制備方法
2-亞烴基環丁酮的一種制備方法,涉及合成砌塊亞甲基環丁酮的合成方法技術領域,該方法以環丁酮和醛酮為原料,在堿的催化下,通過羥醛縮合,一步直接合成較復雜2-亞烴基環丁酮.與傳統合成方法相比,本方法簡單,路線短,原料易得,反應條件溫和,反應易操作.使用本方法將大大降低合成成本,減少合成工作量,提高效率.
揚州大學
2021-05-07
聚丙烯腈
基
炭微納米球及其制備方法
炭材料因其具有豐富的組織結構和許多優異的性能而獲得了廣泛的應用,焦炭、炭黑、活性炭、炭纖維等炭材料早已深入到社會生活的各個領域并為人們所熟知,炭富勒烯及炭納米管的發現引起了人們對納米級炭材料的研究熱潮。炭元素同時可以形成球狀結構,粒徑大小范圍從幾十納米至幾十微米間的球形炭材料,由于具有耐熱、耐化學腐蝕性、強度高、粒徑大小及比表面積可調,可在吸附、儲能儲氣、納米器件、催化劑載體、潤滑劑等方面得到廣泛的應用。 從瀝青制備炭微球已為人們所熟知,具體方法有直接熱縮聚法、液相乳化法、懸浮法,所得到的炭球粒徑一般在幾十到上百微米。近年來興起了一些新的制備炭微球及納米球的方法,如加壓炭化法、電弧放電法、氣相沉積法、熱解法等,極大的豐富了炭微球及納米球的制備工藝。然而,這些方法總是存在這樣或那樣的局限性,如工藝繁瑣、收率低、產品不均一、成本高等。 本技術提供一種單純以聚丙烯腈為前驅體的生產炭微納米球的方法,該方法直接以聚丙烯腈球為前驅體制備炭納米球,無需共聚或包覆其它需去除性物質。該方法工藝簡單,產率高,適于大規模生產。 具體工藝包括: 1.聚丙烯腈球的無皂乳液聚合 將單體丙烯腈、無離子水以一定比例混合,氮氣保護下劇烈攪拌以除去空氣,然后升溫,加入引發劑進行乳液聚合,反應2~8h,得到白色聚丙烯腈乳液;將該乳液冷凍干燥后得到粒徑為150~500nm的聚丙烯腈球的白色粉末。 2.聚丙烯腈球的穩定化 將步驟(1)得到的聚丙烯腈微納米球粉末置于鼓風干燥箱中,程序升溫,在180~350℃進行預氧化穩定化處理,氧化時間為1~10h,得到棕色或黑色聚丙烯腈微納米球。 3.聚丙烯腈球的高溫炭化 將步驟(2)得到的穩定化后的聚丙烯腈球在惰性氣體保護下于700~1500℃程序升溫,進行炭化處理0.5~5h,得到黑色聚丙烯腈基炭微納米球。 球徑可控且純度極高,無需分離等后續工藝。如果進一步石墨化可獲得微納米石墨球。
上海理工大學
2021-04-11
苯乙烯類熱塑性彈性體
基
熱熔壓敏膠
熱熔壓敏膠是以熱塑性聚合物為主的膠粘劑。它兼有熱熔和壓敏雙重特性,在熔融狀態下涂布,冷卻硬化后對壓力敏感,施加輕壓便能快速粘接。與其他類型的膠粘劑相比,熱熔壓敏膠最大的優點是不含溶劑、低公害、涂布速度快、貯存時間長、自動化程度高、制備和使用簡單、制品成本低(其價格為溶劑型壓敏膠的50%~70%)。故熱熔壓敏膠廣泛應用于包裝、醫療衛生、書籍裝訂、無紡織物、標簽、表面保護膜、材料加工、建筑裝潢及制鞋等方面。 苯乙烯類三嵌段共聚物SIS、SEBS具有很好的使用性能和加工性能,廣泛地應用于熱熔壓敏膠的制備。尤其是SEBS,因其整個分子骨架是飽和的,以其為主體材料制備的膠粘劑具有優異的耐候性能和良好的耐寒性,因而SEBS在熱熔壓敏膠中的地位日趨重要。 本項目通過研究SIS、SEBS與各類增粘劑,增塑劑等組分的協同效應對熱熔壓敏膠性能的影響,解決了壓敏膠初粘性與持粘性之間的矛盾,所制備的熱熔壓敏膠粘劑具有“三高”,即高的粘附性、高的內聚強度和高的軟化點。
上海理工大學
2021-04-11
有關大規模硅
基
集成高維光量子芯片的工作
利用大規模集成硅基納米光量子芯片技術,實現對高維度光量子糾纏體系的高精度和普適化量子調控和量子測量。 (圖一)基于硅納米光波導的大規模集成光量子芯片(可實現對高維量子糾纏體系的高精度、可編程、且任意通用量子操控和量子測量) 集成光學量子芯片技術,基于量子力學基本物理原理,使用半導體微納加工工藝實現單片集成光波導量子器件(包括單光子源、量子操控和測量光路,以及單光子探測器等),可以實現對量子信息的載體單光子進行處理、計算、傳輸和存儲等。集成光學量子芯片具有集成度高、穩定性高、性能好、體積小、制造成本低等諸多優點。因此,該技術被普遍認為是一種實現光量子信息應用的有效技術手段。 利用硅基納米光波導技術實現的光量子芯片具有諸多獨特優點,例如與傳統微電子加工工藝兼容、可集成度高、非線性效用強、以及工作波長與光纖量子通信兼容等。然而,迄今為止光量子芯片的復雜度僅限于小規模的演示,如集成少數馬赫-曾德干涉儀對光子態進行簡單操控。因此,我們迫切需要擴大集成量子光路的復雜性和功能性,增強其量子信息處理技術的能力,從而推進量子信息技術的應用。 相干且精確地控制復雜量子器件和多維糾纏系統是量子信息科學和技術領域的一項難點。相對于目前普遍采用的二維體系量子技術,高維體系量子技術具有信息容量大、計算效率高、以及抗噪聲性強等諸多優點。最近,多維度量子糾纏系統已分別在光子、超導、離子和量子點等物理體系中實現。利用光子的不同自由度,如軌道角動量模式、時域和頻域模式等,可以有效編碼和處理多維光量子態。然而,實現高保真度、可編程、及任意通用的高維度量子態操控和量子測量,依然面臨很多困難和挑戰。 針對上述問題,英國布里斯托爾大學、北京大學、丹麥技術大學、德國馬普研究所、西班牙光學研究所和波蘭科學院的科研人員密切合作,并取得了突破性進展。研究團隊提出并實現了一種新型的多路徑加載高維量子態方式,即每個光子以量子疊加態的形式同時存在于多條光波導路徑,從而實現了一個高達15×15的高維量子糾纏系統。通過可控地激發16個參量四波混頻單光子源陣列,可以制備具有任意復系數的高維度量子糾纏態。通過單片集成通用型線性光路,可對高維量子糾纏態進行任意操控和任意測量。因此,該多路徑高維量子方案具有任意通用性。與此同時,團隊充分利用集成光路的高穩定性和高可控性,實現了高保真度的高維量子糾纏態,如4、8和12維度糾纏態的量子態層析結果分別為96、87% 和 81%保真度,遠超其他方式制備的高維量子糾纏態性能。 更重要的是,團隊通過硅基納米光子集成技術,實現了目前集成度最復雜的光量子芯片(圖一所示),單片集成550多個光量子元器件,包括16個全同的參量四波混頻單光子源陣列、93個光學移相器、122個光束分束器、256個波導交叉結構以及64個光柵耦合器,從而達到對高維量子糾纏體系的高精度、可編程、且任意通用量子操控和量子測量。 研究進一步利用該高維光量子芯片技術,驗證高維度量子糾纏系統的強量子糾纏關聯特性,包括普適化貝爾不等式和EPR導引不等式等,證明量子物理和經典物理定律的重要區別。例如,對4維度量子糾纏態,實驗觀察得到了2.867±0.014的貝爾參數,不僅成功違背經典物理定律61.9個標準差,而且超過普通二維糾纏體系的最大可到達值的2.8個標準差。研究還首次實現高維量子系統的貝爾自檢測和量子隨機放大等新功能,例如,對3維度最大糾纏態和部分糾纏態的自檢測保真度約為76%,對14維以下糾纏態均實現了量子隨機放大功能。
北京大學
2021-04-11
高強度高韌性氧化鋯
基
陶瓷及其制備方法
本技術解決了現有常壓燒結技術中制備氧化鋯基陶瓷韌性較低以及濕法成型時高濃度、低粘度漿料制備困難的問題。將氫氧化鋁包覆在納米氧化鋯(含4.37~6.04%氧化釔)粉體表面,熱處理組合成氧化鋯-氧化鋁復合微粉(微粉中四方相氧化鋯含量占氧化鋯總量的70-90%)。以該復合微粉、丙烯酰胺、交聯劑和分散劑為原料,通過注凝成型制備生坯,在常壓燒結條件下制備本發明
南京工業大學
2021-01-12
一種液體深層發酵生產塊菌多糖的培養
基
研發階段/n本發明公開了一種液體深層發酵生產塊菌多糖的培養基。該培養基由乳糖、蛋白胨、硫酸鎂、磷酸二氫鉀按一定比例構成,其塊菌多糖的制備步驟首先是斜面菌種培養,其次是液體種子培養,最后是液體深層發酵。本發明通過對中國塊菌的斜面菌種、一級液體種子和二級液體種子的培養來穩定其生理狀況,在液體深層發酵階段著重考察了不同碳源、氮源及起始pH值對塊菌液體深層發酵過程中塊菌多糖產量的影響。在該培養基中塊菌生長迅速,發酵周期短,多糖產量高,成本低,適用于工業化大規模生產塊菌多糖。
湖北工業大學
2021-01-12
首頁
上一頁
1
2
...
48
49
50
...
233
234
下一頁
尾頁
熱搜推薦:
1
云上高博會企業會員招募
2
64屆高博會于2026年5月在南昌舉辦
3
征集科技創新成果
跨国际百家乐的玩法技巧和规则
|
百家乐玩牌
|
百家乐官网等投注网改单
|
LV百家乐客户端LV
|
济州岛百家乐官网的玩法技巧和规则
|
百家乐官网娱乐网77scs
|
新2开户
|
大发888游戏官方下载
|
百家乐那个平台好
|
郑州百家乐官网高手
|
宣城市
|
可信百家乐的玩法技巧和规则
|
百家乐技巧公司
|
百家乐网上娱乐场开户注册
|
澳门百家乐搏牌规则
|
迪威百家乐娱乐网
|
12倍百家乐秘籍
|
百家乐专家赢钱打法
|
澳门百家乐有没有假
|
路冲铺面能做生意吗
|
网络百家乐官网投注
|
成安县
|
百家乐官网用什么平台
|
玩百家乐官网的高手
|
百家乐官网赌术大揭秘
|
百家乐官网b28博你
|
带有百家乐官网的棋牌游戏有哪些
|
连环百家乐官网的玩法技巧和规则
|
易胜博百家乐官网下载
|
新百家乐官网.百万筹码
|
百家乐官网路单
|
百家乐怎么赢对子
|
百家乐官网英皇娱乐场
|
缅甸百家乐论坛
|
百家乐赌马
|
威尼斯人娱乐城排名
|
至尊国际
|
赌百家乐官网怎样能赢
|
百家乐官网技巧何为百家乐官网之路
|
职业赌百家乐官网技巧
|
百家乐路单破解器
|